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1. Phys. A: Math. Gen. 19 (1986) 1709-1714. Printed in Great Britain 
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Abstract. An attempt to generalise the combinatorial solution of the two-dimensional (2D) 
nearest-neighbour ( N N )  Ising model to three dimensions is reported. A generating function, 
which fully exposes the symmetry of the lattice, is derived for the 2D square Ising model. 
A ‘natural’ extension to the 3D simple cubic (sc) lattice is shown to be false. A certain 
circumstance for the 2D case leads to the conjecture that tanh(J/kT,) = (A- 2) cos(~r /8)  
for the S C N N  Ising model. 

1. Introduction 

Ising (1925) solved, for the one-dimensional case only, the model for a system of 
interacting spins which now bears his name. It took almost two decades until Onsager 
(1944) presented the first solution of the two-dimensional case (in the absence of an 
external magnetic field), using the theory of Lie algebras. During the years following 
the publication of Onsager’s solution there were several claims to have solved the 
three-dimensional king model. One attempt which evoked considerable discussion 
was due to Maddox (1952). There was also an attempt at a three-dimensional solution 
by Murray (1952). (The author is grateful to the referee for pointing out the last two 
references.) The algebraic derivation of the two-dimensional solution has subsequently 
been simplified, first by Kaufman (1949) using the theory of spinor representations, 
and later by Schultz et al (1964) who reduced the ZD Ising model to a soluble problem 
of many fermions. It has recently been realised that the model in higher dimensions 
also allows a fermionic representation (Polyakov 1981, Itzykson 1982). In the mean 
time alternative approaches to the problem have been developed, one being to reduce 
the problem to one of counting polygons on a lattice (van der Waerden 1941). This 
is the so-called combinatorial method, and the first solution was presented by Kac and 
Ward (1952). The proofs necessary to make this solution rigorous were later supplied 
by Sherman (1960, 1963) and Burgoyne (1963). The problem of counting polygons 
(not directed) on the lattice is solved by counting weighted directed subgraphs and 
expressing the number of ordinary undirected subgraphs in terms of the directed ones. 
The directed subgraphs are connected, so they can be described as closed weighted 
walks. In this paper we derive a generating function for the two-dimensional weighted 
walk, and interpret what the different terms in this function mean. In a certain limit 
we recover an expression due to Fisher (1967). We consider possible generalisations 
to three dimensions and show that a ‘natural’ choice is false. A certain circumstance 
for the two-dimensional case makes us put forward the conjecture that for the simple 
cubic N N  k ing  model tanh(J/ kT,) = (A- 2) cos( v/8). 
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2. The generating function 

We begin by discussing the two-dimensional walk generating function for the square 
net and start with the simplest case. If a step to the right is denoted by a, a step to 
the left by d, a step upwards by b and a step downwards by 6, we could say that we 
have a four-letter alphabet. Since we are interested in walks where no about-faces are 
allowed, we should determine the number of words of given length in which no letter 
is followed by its inverse, i.e. 6must not be followed by b. If we denote byf;(a, E,  p, p) 
the number of words which start with the letter i ( i  = a, d, b, 6) and contain the letter 
a a times, the letter d E times, the letter b p times and the letter 6 p  times, the following 
recurrence is simply derived: 

fa(. + 1 ,  E, P, PI =f (a ,  5, P, PI + h ( ~ ,  E, P, P )  + f s ( ~ ,  E, P, PI + ~ a , o ~ ~ , o ~ p , o ~ f i , o  ( 1 )  
where we have chosen f ; ( O ,  0, 0,O) = 0. If we define the generating function Fi, in four 
variables, by 

Fi(x ,  y ,  z, U )  = c_ f ; (a ,  ti, p, p ) x " y " z P u P  ( i = a , d ,  b ,6 )  
a**,P,P"O 

and multiply the relation (1) by 
analogously for the three corresponding relations f ,, fb and f 6,  we obtain 

and sum over a, E, p, p 2 0  and do this 

F , = ( F b + F , - + l ) x / ( l - x )  F , j = ( F b + F , - +  l ) y / ( l  - y )  

Fb = ( F a  + F,- + 1 ) z /  ( 1 - z )  
(2) 

F , - = ( F , +  F , +  l ) ~ / ( l  - U ) .  

If we define F = Fa + F ,  + Fb + F E ,  we obtain 

F = ( U +  V + 2 U V ) / ( 1 -  UV)  (3 )  
where U = x / ( l  - x )  + y / (  1 - y )  and V = z / (  1 - z )  + U / (  1 - U ) .  This is the walk (word) 
generating function. We now proceed to the case where we do not allow the words 
to end on the inverse of the initial letter, or in terms of walks we do not allow, e.g., 
a walk that starts with a step to the right and ends with a step to the left. We now 
have to keep track of both the initial and final letters, and we get sixteen instead of 
four relations, of the type 

Lo(a+1, ~ , P , P ) = f o a ( a ,  ~ , ~ , P ) + . i i a ( a ,  & , ~ , P ) + f K a ( a ,  ~ , ~ , P ) + ~ a , o s ~ , o ~ p , o ~ f i , o  

(4) 
where J j (a ,  E, P, p) denotes the number of words starting with the letter i and not 
ending with the inverse of the letter j ,  and the meaning of the greek letters is as before. 
The function F,, is defined 

and correspondingly for the other functions F,,, (The fact that Aj =A, together with 
(4) means that the coefficient in front of x a y d z P u P  in ( 5 )  is also equal to the number 
of words beginning and ending with the letter a, containing the letter a Q + 1 times, 
the letter d 6 times, and so on.) 

Multiplying (4) with x U + ' y 6 z P u p  and correspondingly for the other fifteen relations 
and summing over a, E, p, p 3 0 we arrive at a system of sixteen equations of which 
we, for brevity, give only the first four: 

Fa, = X (  F,, + Fba + Fs,  + 1 )  

Fob = X (  Fab + Fbb + F &  + 1 )  

F a ,  = X (  F , ,  + Fba + F6,) 

Fa,-= X(F,,-+ Fb6-k F G ~ +  1 ) .  
(6 )  
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The relations FV, i Z a, should be obvious by now. Solving the system of equations 
we obtain for F = Fa, + Fa,  + Fbb + Fw 

y v-2-- ( 1 -  uv)-'. ( 7 )  
1 - x l - y  1 - z l - U  

U +  V+2UV-2-- 

That is, the restriction imposed on the walk has introduced two new terms in the 
numerator. 

Now we turn to the walk encountered in the combinatorial solution of the Ising 
model. This walk is weighted so that a left-turn is given the weight y, a right-turn the 
weight y- ' ,  straight ahead the weight 1 and about-face the weight 0 (as before), and 
where y = exp(ir /4)  (Kac and Ward 1952). To impose these weights (6) has to be 
changed to 
Fa, = X (  Fa, + YFb, + y-'F,-, 1) F, ,=X(F, ,+yFb,+y-'F~,)  

Fob = x(Fab + yFbb + y-'F6bS y )  
(8) 

F a 6 = X ( F , 6 +  yFb,-+ y-'F6,-+ 7-l) 

and correspondingly for the other twelve relations. (The alternative interpretation of 
J j  discussed after ( 5 )  has been used.) After some lengthy and tedious algebra we have 

U-l(j---- 
1 - x l - y l - z l - U  

z u  U+V+2UV-2--  y v-2-- 
1 - x l - y  1 - z l - U  

x l-UV+4---- ( 1 - x l - y l - 2 1 - U  ) - I  
( 9 )  

Before discussing the three-dimensional case we examine (9) in closer detail. The 
generating function diverges when the denominator is zero. For the square Ising model, 
with the same interaction in both directions, meaning x = y = z = U = tanh(J/kT) (each 
edge carries in the combinatorial formulation due to van den Waerden a factor 
tanh(// k T ) ,  where J is the interaction between neighbouring spins, k the Boltzmann 
constant and T the temperature), we obtain tanh(J/ kT,) = & - 1 ( x  = & - 1 is a single 
root of the numerator and a double root of the denominator). The generating function 
(9) generates all walks. For the Ising model free energy we should sum all weighted 
closed walks of given length. That the walk is closed means that the number of x steps 
equals the number of y steps, and that the number of z steps equals the number of y 
steps, i.e. a = G and p = p. Further, a polygon of length 1 is generated by 21 walks, 
the factor 2 originating from the two different directions it can be traversed, and the 
factor I from the 1 different starting points that can be chosen on the polygon. By 
summing up the coefficients in front of xayazpup with 2 a  + 2 p  = 1 and dividing by 21 
the desired expansion is obtained. We instead proceed in a more direct way to obtain 
the connection to the Onsager formula. Replace in (9) a step to the right, x, by xeie, 
and a step to the left, y, by xe-ie. Similarly in (9) a step up, z, is changed to zeiC and 
a step down, U, is changed to ze-'". Further if x = y = z = U = t, F can be rewritten 

 COS  COS vc)-4t2-6t3(~os  COS v)-4 t4  -_  N 
i - 2 t ( c 0 ~  e+coscp)+2t2+2r3(cos e + c o s c p ) + t 4 - ~ '  

F =  

But 

t d D / d t =  -hi 
means that 

F = - t  d In D/dt.  
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By integrating over 0 and Q from 0 to 27r and dividing by ( 2 ~ ) '  we keep only the 
closed walks. If F,, denotes the generating function for the closed walks we obtain 

F,, = -2t df ldt  

where 

ln[l-2t(cos @+cos (p)+2t2+2t3(cos @+cos ~ ) + t ~ ] d @ d ~ .  (11) 
8 7T2 

The function f is the one usually encountered and which has the well known expansion 

f = c antn 

where u4= 1, u6= 2, us =f, . . . (Domb 1974). That is 

F,, = -2t df/dt = -2 2 nu,,?". 

After having elucidated the relation between the generating function defined here and 
the one usually encountered, we now turn to the three-dimensional case. 

The expressions corresponding to (3) and (7) can be derived in a completely 
analogous way. For the case where we do not allow words of our now six-letter 
alphabet ( U ,  5, b, 6, g and 2) ending in the inverse letter of the initial letter we obtain 
the generating function 

F = { U + V +  W + 2 ( U V + U W + V W ) + 3 U V W  

-2[ 2jq v+ W) + %( U + W) + ;;( U + V)] - 4( 2 f W  + iliuw + ;;uv)} 

x [ l - (  uv+ uw+ VW)-2uVW]-' (12) 
where W = s / ( l  - s ) +  t / ( l  - t )  and s corresponds to (say) a step into the plane and t 
to a step out of the plane. If the last two parentheses in the numerator of (12) are put 
equal to zero, we obtain the generating function for walks with no restrictions on the 
last step, i.e. the expression corresponding to (3) for the two-dimensional case. These 
last two expressions have been derived in a different way by Fisher (1967). (Note that 
we have defined the generating functions so that the number of walks with no steps 
is zero; Fisher has defined this number to be 1.) From the sequence of generating 
functions (3), (7), (9) and (12) one might hope to obtain a hint of what the generating 
function for the three-dimensional Ising model free energy looks like. A comparison 
between (7) and (9) suggests that it should look like (12) with 'loop' terms added in 
both numerator and denominator. (By 'loop' terms we mean terms containing all 
variables.) Further, it should contain three two-dimensional Ising free energy generat- 
ing functions, i.e. if we turn off the interaction along any direction we should recover 
a two-dimensional generating function. We have set up one 'natural' general such 
expression, to be specified below, with some of the coefficients undetermined. This 
ansatz has been expanded in a power series. By performing the same partial sum of 
closed walks as described for the two-dimensional case, we can compare this expansion 
with the known enumeration (Domb 1974). In this way we obtain a system of equations 
for the undetermined coefficients in the ansatz. The ansatz set up was the following: 

where N 1 = U + V + W ,  N 2 = 2 ( U V + U W + V W )  N3=3UVW, N4=-2[i9(V+ W)+ 
A A A 1  AAA' A A A A  %( U + W) + ;i( U + V)], N5 = - 16[ XYZU + xyst + ZUS?], N6 = -4[ 2jVW + iliU W + s*;uv], N,=-A[i9y^iu^W+2fy^s^iV+ilis^iU], N , = - B x y z u s t ,  A A A A A A  D1= 1 - (  UV+ UW+ 
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VW) - 2 UVW, D4 = 
F [ ~ ~ ~ $ W + ~ ~ ~ i V + ~ $ u * s ^ t U ] ,  D5= Cij%Gt and i? means x / ( l -x ) ,  etc. The ansatz 
contains the parameters A, B, C, E and F. We obtain five equations from the known 
numbers of polygons of length six, eight, ten, twelve and fourteen. Unfortunately no 
integer solutions were found. The ansatz goes beyond just adding another angle in 
the argument of the logarithm in the function f of the two-dimensional solution (1 1). 
Before discussing more general forms of ansatze we would like to report on an 
observation. 

The system of weights, 1, 0, y and y- ’ ,  has the consequence that when counting, 
e.g., walks beginning and ending with a step to the right, one obtains the same number 
of walks of given length as if, instead of introducing these weights, all steps to the left 
had been forbidden. This is so because if one iterates the 4 x 4  matrix of which 
(1 0 y y-l) is the first row, the second element in the first row is zero in each order, 
which is easily proven. That is, there are equally many walks, beginning and ending 
with a step to the right and containing backsteps, with a plus sign as with a minus 
sign. If one forbids backsteps for the 3~ case, one obtains a recurrence relation with 
the largest characteristic value 8 + 2 .  (Note that we are counting all walks now and 
not only closed walks, but as we saw before both F and F,, have the same radius of 
convergence.) However for the 3~ case we do not expect this cancellation for walks 
containing backsteps; rather, there should be more such walks with a plus sign than 
with a minus sign, since the extra dimension gives the walks many more chances to 
avoid themselves. (A walk beginning and ending, e.g., with a step to the right and 
which intersects itself an odd number of times has a minus sign.) If we undercount 
in this way, we overcount by counting all walks not turning back with a plus sign, 
even those walks which intersect themselves in a plane perpendicular to the direction 
of the first step. However, even if we cannot calculate these two effects, we believe 
that their ratio, being a topological effect of the lattice, for large walks should converge 
to some ‘simple’ number. If we divide the best estimates of tanh(J/kT,) by 8 - 2  (the 
radius of convergence of the generating function forbidding backsteps in 3~ being the 
inverse of the characteristic value given above) we obtain an estimate of this ‘simple’ 
number. It turns out that the estimates of tanh(J/kT,) are very close to (a- 
2) cos(.rr/8), in fact so close that we conjecture that the relation tanh(J/kT,) = 
( A - 2 )  C O S ( T / ~ )  is true. The relation gives J / k T , =  0.221 658 63 . . . , and recent series 
expansion estimates give 0.221 655( 10) (Zinn-Justin 1981), 0.221 66( 1) (Gaunt 1982) 
and 0.221 655( 5 )  (Adler 1983). Further Monte Carlo renormalisation group calculations 
give 0.221 654(6) (Pawley et al 1984), and the estimate from the Monte Carlo Processor 
(MCP) at Santa Barbara is 0.221 650(5) (Pearson 1984, Barber et al 1983). Thus, the 
value obtained from the conjectured relation is within the margin of error of all the 
estimates except that of the MCP. 

D2 = 4ki?j%?$ + i?yfi+ %i?J, D3 = E [ i?j%’W + f$UW + s^iUV], 

3. Summary 

We have, for the 2~ square lattice, derived three different walk generating functions, 
the second and third by imposing conditions on the first type of walk. The third case 
discussed corresponds to the 2~ Ising model free energy. For the 3~ simple cubic 
lattice the corresponding first two walk generating functions have been obtained, and 
for the last case, the 3~ sc Isihg model free energy, an ansatz based upon symmetry 
arguments and upon analogies with the 2~ case is suggested. The ansatz is proven to 
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be false. We believe, however, that the true generating function may be written in a 
form similar to the ansatz tested here, although the numerator and denominator may 
be of a degree higher than six in the reduced variables (the variables with circumflexes). 
Further, a consequence of the system of weights introduced in the combinatorial 
solution of the 2~ Ising model leads us to conjecture that tanh(J/kT,) = 
( a - 2 )  cos(.rr/8) for the 3~ simple cubic Ising model, a value in good agreement with 
the best estimates available. It is certainly intriguing that the conjecture contains the 
factor cos( . r r /8 ) ,  since the factor is used in the combinatorial solution of the 2~ 

square Ising model, the critical temperature of which obeys the relation tanh(J/  kT,) = 
2 COS( ~ / 4 )  - 1. 
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